

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Java2DB

This little badboy allows you to access your
database without writing a single line of SQL in your application.While this library may not offer the most fancy features or allow
you to fire huge queries to your database, that is not what it is intended for.
It is lightweight and meant for a quick and simple access to your database.

P.S.: Feature requests are always welcome. Just open an issue.

Please note: This is a Java 10 library. Make sure you have Java 10 installed when using this library.
This library is not suitable for projects requiring complex SQL queries, although it does offer some advanced features.
It is meant for smaller projects which want to interact with their database in a simple,
but easy way without bloating the source code with SQL queries.

How it works

Java classes (entities) model tables on the database and their fields.
Every class has a corresponding service class, which acts as a data
service and interacts with the database. Which values should be fetched, can be defined inside the services.
The service classes will fill an entity with values from the database using a default mapper.
You can define your own mappings by implementing the Mapper interface and registering your custom mapper with the IoC.registerMapper method.

Usage/Example

Lets say we have a database with two tables with the following structure:

gender

id

code

description

isBinary

person

id

name

age

genderId(foreign key to id column of gender)

Then we would need two entities:

@TableName("gender")
public class Gender extends BaseCodeAndDescriptionEntity {
 // In this case, BaseCodeAndDescriptionEntity gives us the id, the code and the description.
 // We need to add the rest.

 private boolean isBinary;

 // Getters and setters...
}

@TableName("person")
public class Person extends BaseEntity {
 // In this case, BaseEntity only gives us an id field.
 // We need to add the rest.

 private String name;

 private int age;

 private long genderId;

 // That way Java2DB will know that this field does not exist on the database.
 // It will be filled accordingly.
 @ForeignKeyEntity("genderId")
 private Gender gender;

 // Getters and setters...
 // Note that it is not suggested for foreign key entities to have setters.
 // They are effectively useless.
}

Every entity must extend BaseEntity and have an empty constructor.
If you want to have a field in your entity that should be ignored by Java2DB, you can use the Ignore attribute.

Then we can go ahead and create the (for now) empty service classes:

public class GenderService extends BaseService<Gender> {

}

public class PersonService extends BaseService<Person> {

}

Every service must extend BaseService.

That’s it! Now we can access the database using the services with simple predefined methods like getById and so on.
Custom methods can be defined in the respective service using the
getSingle or getMultiple methods provided by the BaseService class.
When using getMultiple method, you can use some more query options, like where, orderBy and limit
in the returned Query object.

It is also possible to achieve LIKE operations using the String startsWith, endsWith and contains methods on a String field.

For counting functionality, the BaseService provides a count method.
You can use it to either count all rows in a table, or to count all rows which match a certain condition.If you would like to check if a certain record exists in a table, you can use the any method provided by the BaseService.
Using the above example, the usages would look something like this: personService.any(person -> person.getName() == "Steve") or personService.count(person -> person.getName() == "Steve").
You can also check if a table has at least one row when using the any method without any parameters.

The querying methods can only be used by methods in the respective service classes.
This is because every service should have descriptive methods for any data they get.

The current version also offers full support for default query constraints.
This means you can tell Java2DB to execute a certain WHERE condition on every query that is executed on a specific table.
Here’s an example: Say every query executed on the person table should only return people of age
18 and older and with an id greater than 0 (just because). This can be achieved adding query constraints using the QueryConstraints class.
In our case, this would look something like this:

public class Main {
 public static void main(String[] args){
 // register the services and all that
 QueryConstraints.addConstraint(Person.class, person -> person.getAge() >= 18);
 QueryConstraints.addConstraint(Person.class, person -> person.getId() >= 0);
 }
}

This is useful for cases where deleted records in a table are marked by an isDeleted flag (or something similar) and these records should never return in any query.

Getting started

First, include the Maven artifact:

<dependency>
 <groupId>com.github.collinalpert</groupId>
 <artifactId>java2db</artifactId>
 <version>3.0</version>
</dependency>

Or include the JAR [https://github.com/CollinAlpert/Java2DB/releases/latest] in your project. To begin using this library, you need to do two things on program start:

	Connect to the database. Set the static variables HOST, DATABASE, USERNAME, PASSWORD and optionally DATABASE_TYPE and PORT of the DBConnection class to achieve possibility of connection.

	Register an instance of all of your services. Use the IoC.registerService method to do this. Using the above example, it would look something like this: IoC.registerService(Person.class, new PersonService());.

As the services should follow the singleton pattern, you should retrieve an instance of a service using the IoC.resolveService method.If you would not like your queries logged in the console, use the DBConnection.LOG_QUERIES = false; statement.In case Java2DB can’t establish a connection with your database, it will throw a ConnectionFailedException. You can catch it and perform your own handling.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

